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Abstract

In a game with costly information acquisition, the ability of one player to

acquire information directly affects her opponent’s incentives for gathering in-

formation. Rational inattention theory then posits the opponent’s information-

acquisition strategy is a direct function of these incentives. This paper argues

that people are cognitively limited in predicting their opponent’s level of in-

formation, and hence lack the strategic sophistication that the theory requires.

In an experiment involving a real-effort attention task and a simple two-player

trading game, I study the ability of subjects to (1) anticipate the information

acquisition of opponents in this strategic game, and (2) best respond to this

information acquisition when acquiring their own costly information. I study

this by exogenously manipulating the difficulty of the attention task for both

the player and their opponent. Predictions of behavior are generated by a novel

theoretical model in which Level-K agents can acquire information à la rational

inattention. I find an out-sized lack of strategic sophistication, driven largely

by the cognitive difficulties of predicting opponent information. These results

suggest a necessary integration of the theories of rational inattention and costly

sophistication in strategic settings.
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1 Introduction

Recent advances in behavioral economics have shown that cognition is difficult and

that this difficulty can lead to predictable divergences from classic economic behavior.

Two areas that have found significant success in modeling such cognitive difficulties

are rational inattention and strategic sophistication. Rational inattention proponents

(beginning with Sims, 2003) have shown that in decision-making settings, individuals

acquire information in a way that maximizes the utility of gaining that information

less the mental costs of doing so. In strategic settings, the strategic sophistication

literature (beginning with Nagel, 1995) has shown that individuals are limited in their

ability to reason contingently and anticipate the actions of others.

The present paper seeks to join these two fields to examine how individuals be-

have in games with costly information. Recently, many papers have theoretically

examined equilibria in such settings—they study how players acquire information

optimally in games where one or more players can, at a cost, acquire information

about payoff-relevant states of the world. Previous papers examine specific settings

such as bargaining games (Ravid, 2020), buyer-seller games (Matějka, 2015; Martin,

2017), global games (Yang, 2015), and Bayesian persuasion games (Gentzkow and

Kamenica, 2014; Bloedel, 2019). However, while all of the papers above have allowed

for information to be cognitively difficult to acquire, they all assume agents behave

in a perfectly strategically sophisticated manner. That is, they assume agents under-

stand the attentional costs of their opponents and correctly predict their opponent’s

optimal information acquisition in light of these costs. These calculations are likely

very cognitively demanding, yet assumed to be easily understood by all players. An

open question this paper seeks to answer is then, to what extent are players able to

anticipate and best respond to the information acquisition of others?

I study this question using the simplest possible strategic setting. Here, two players

must decide whether to accept or reject a deal of unknown value. The expected

value of the deal is positive for both agents, but the ex-post realization of this value

is positive for one agent and negative for the other. In such a case, the utility of

making a “right” or “wrong” decision transparently hinges on the ability of the other

player to make a “right” or “wrong” decision themselves. In such a game, each

player must (1) predict how often the other player is mistakenly accepting bad deals
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and rejecting good ones, and (2) optimally choose their own level of accuracy in

light of the former. Given the cognitive difficulty of each step, it is vital to test

to what degree individuals are capable of such thinking, and in which ways they

may systematically deviate. Furthermore, by restricting my focus to the simplest of

strategic situations, experimental tests of the model give subjects the “best shot”

of behaving in a strategically sophisticated manner, compared to the more complex

settings previously discussed in the theoretical literature.

Predictions are generated by combining a leading theory of information acquisition,

rational inattention, with a leading theory of strategic sophistication, Level-K theory.

The predictions describe how behavior in the game above should react to changes in

the ability of the player and their opponent to acquire information about the deal’s

value. A low-sophistication agent is characterized by having behavior that is inde-

pendent of their opponent’s attentional ability—they do not acquire information as if

they are playing another strategic player, but rather treat the game like a single-agent

decision problem. Higher levels of sophistication, including Nash predictions, have

behavior that is a function of both their own and their opponent’s cost of attention.

They are aware that facing an opponent with lower costs of attention decreases the

potential benefits of accepting a deal, and thus the strategy of a high-sophistication

player focuses more on rejecting unfavorable deals than accepting favorable ones.

These predictions are then tested with a laboratory experiment in which I alter the

information acquisition costs of each player in a simple two-player game. These costs

are altered through the manipulation of a real-effort attentional task with two starkly

different levels of difficulty. Subjects play many rounds of this game, under all four

possible combinations of their task difficulty level and their opponent’s task difficulty

level. The main finding is that subjects show an extremely limited ability to conduct

contingent reasoning in these games. The vast majority of subjects show no effect

of opponent task difficulty on behavior. I argue that the mechanism behind this

behavior is beliefs. Specifically, subjects seem to have inaccurate (or possibly uncer-

tain) beliefs about opponent information strategies. Instead of attempting to model

and anticipate opponent information (a cognitively demanding task), the subjects ig-

nore the opponent’s strategy altogether and simply treat the game as a non-strategic

decision problem.
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A follow-up treatment tests this mechanism specifically. In this treatment, I remove

any possible uncertainty about opponent behavior by having subjects play a computer

that plays a predetermined and transparent strategy. For comparability, this strategy

exactly mimics the mean behavior of subjects in the main treatment. Subjects in

the follow-up treatment significantly adjust their information strategies in response

to different computer strategies—they focus their attention on rejecting unfavorable

deals when facing a “low cost of attention” computer opponent. This finding supports

the hypothesis that beliefs and uncertainty about opponent behavior play a sizeable

role in the observed lack of strategic sophistication in behavior.

In studying the above, this paper naturally contributes to two strands of literature:

rational inattention and strategic sophistication. The present paper shows how the

two can complement each other to provide a more comprehensive model of how indi-

viduals interact in strategic settings with information acquisition.

The rational inattention literature, beginning with Sims (2003) and expanded on

by Matějka and McKay (2015) and Caplin, Dean, and Leahy (2019) has primarily

focused on non-strategic decision-making. However, an emerging sub-field has studied

strategic settings in which one or more agents in a game face costs of attention.

Theoretical papers studying games with a single rationally inattentive agent include

studies on strategic pricing (Martin, 2015), bargaining (Ravid, 2020), and persuasion

(Gentzkow and Kamenica, 2014; Bloedel and Segal, 2018; Matyskova, 2018). Papers

studying games with multiple rationally inattentive agents have largely focused on

coordination games with symmetric attention costs (Yang, 2015; Szkup and Trevino,

2015).

Most recently, Dömötör (2021) studied theoretically a Market for Lemons game with

two rationally inattentive players. Dömötör finds that asymmetric costs of attention

can result in endogenous asymmetric information, but that these asymmetries do not

lead to the same market breakdowns present in Akerlof (1970). My paper also studies

how asymmetric costs of attention can result in asymmetric information, however

through a simpler model that is more readily testable in the lab, I show how players

fail to take into account the asymmetric costs of other players in the game. The

game studied in my paper closely resembles that of Carroll (2016). While the simple

strategic setting allows Carroll’s paper to study welfare implications robust to any
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possible information structure, I utilize the setting’s simplicity to study changes in

how one acquires these information structures.

Martin (2016) is the only previous paper to experimentally test the predictions of

strategic rational inattention. However, the game studied in that paper only features

one rationally inattentive party, whereas the present paper examines a game in which

both parties are rationally inattentive. My paper’s setting is more well-suited to

study strategic sophistication in information acquisition games, which was not the

focus of the previous paper. Martin’s paper, unlike mine, does find some support for

strategic reasoning in such a game. However, his experiment does not manipulate

costs of information acquisition, while mine utilizes this manipulation to explicitly

show subjects’ lack of ability in understanding how such costs translate into behavior.

Further discussion of the differences in our results is saved for the paper’s conclusion.

This paper also uses ideas and tools developed by the strategic sophistication litera-

ture. Specifically, I utilize the Level-K model from Nagel (1995). This model and its

close relative, the cognitive hierarchy model (Camerer et al, 2004), have been used

in a variety of different settings to explain non-equilibrium behavior in experimental

games. Examples include the p-beauty contest (Nagel, 1995), various matrix games

(Costa-Gomes et al, 2001), and the 11-20 game (Arad and Rubinstein, 2012). To my

knowledge, no paper has studied predictions of Level-K models in a game with costly

information acquisition. The present paper is not, however, the first to integrate the

two strands of literature. Aloui and Penta (2016) introduce a model of endogenous

depth of reasoning, which posits that higher levels of strategic sophistication come

at higher cognitive costs, much like how higher degrees of information acquisition

come at higher costs in the rational inattention model. Although their paper con-

siders general economic games—and not games with information acquisition—their

theory is strongly compatible with the one developed in the present paper. For the

sake of exposition, the present theoretical analysis only considers exogenous depth of

reasoning (i.e. Level-K theory). However, I believe this is a crucial future direction of

the present work, in reflection of the present paper’s experimental results which show

a substantial lack of strategic reasoning in an environment where such reasoning is

likely highly costly to perform.

5



2 The Model

This section will first present the game that appears in the experimental design. I will

then analyze the best responses of each player, conditional on their beliefs of their

opponent’s behavior. I then discuss a Nash equilibrium in which these beliefs are

correct. Lastly, I use Level-K theory to generate predictions on the data for various

levels of strategic sophistication.

2.1 The Game

The game consists of two players, which I will call Red and Blue (i ∈ {R,B}). The

two players must decide whether to accept or reject a deal (c ∈ {a, r}). There are

two possible states, θ ∈ {Blue,Red}, which dictate the payoffs each player receives if

a deal is made. A deal is only made if both players accept the deal. If either or both

parties reject the deal, both players receive an identical outside option vo. If both

players accept the deal, their payoffs will be determined by the state of the deal. If

the deal is Blue, the Blue player gets vH and the Red player gets vL, while if the deal

is Red, the Blue player gets vL and the Red player gets vH , with vL < vo < vH . For

ease of explanation, a deal that matches the color of the player will sometimes be

referred to as a favorable deal, whereas a deal of the opposing color will be referred

to as an unfavorable deal.

Informationally, I assume that both players have an identical prior over the two states,

with µ ∈ (0, 1) being the probability of a Red deal. For the remainder of the paper,

I will assume that each state is equally likely, µ = 1
2
, as this will mirror the game

present in the experimental design. An additional assumption I will make on the

model parameters is that vL+vH
2

> vo, which means that deals are ex-ante optimal,

but ex-post inefficient (as vL < vo < vH).

If both players have only the prior, an equilibrium will exist where all players always

accept–due to the ex-ante optimality of the deal. If either party instead has perfect

information, the only equilibrium will be the one in which no deals are ever made.

This is because if one player has perfect information, they will only accept a deal

that is favorable to them, and thus unfavorable to their opponent. Thus this player’s

opponent should never accept a deal, as the only possible deal that could be made

would be costly.
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What I add to this simple game structure is costly information acquisition, in the

style of rational inattention (Sims, 2003). Both players can simultaneously acquire

information about the state of the deal. The standard formulation of this is a cost of

information that is linear in the expected reduction in Shannon entropy from the prior.

Shannon entropy defined over some set of beliefs P [θ] is simply −
∑

θ P [θ] logP [θ], and

can be thought of as how much uncertainty is present in one’s beliefs. For example, if

one knows the probability of one realization of θ is certain, there is 0 Shannon entropy

in beliefs—the minimal possible value. If one has only a uniform prior, Shannon

entropy is at its maximal possible value, as there is complete uncertainty about the

state. Thus reducing Shannon entropy is equivalent to reducing uncertainty in beliefs,

or increasing the informativeness of one’s beliefs. As demonstrated in Caplin and

Martin (2015), an equivalent formulation is expressed in terms of State Dependent

Stochastic Choice data (henceforth SDSC ), which is given by the probabilities the

agent chooses each action in each state. In the present game, because there are

only two possible actions—accept or reject—SDSC is fully characterized by P [a|θ]
for θ ∈ {R,B}. Note that it is always at least weakly optimal for a Red player to

accept a Red deal and reject a Blue deal, while the reverse is true for a Blue player.

So a mistake can either be accepting an unfavorable deal or rejecting a favorable one.

Rational inattention theory then says that reducing these mistakes is costly, and the

cost of reducing them is convex. Formally, if P i[a|θ] is the SDSC of a player, their

cost of information is:

λi(
∑

θ∈{R,B}

1

2
(
∑

c∈{a,r}

P i[c|θ] lnP i[c|θ])−
∑

c∈{a,r}

P i[c] lnP i[c]])

where λi > 0 parameterizes an individual’s difficulty of acquiring information, with a

higher value corresponding to higher costs of information. One interpretation of this

is that it is more costly to have larger cross-state differences in action probabilities

because to do so one needs to be quite good at distinguishing states from one another.

2.2 Solving the Player’s Problem

I now solve for the player’s optimal strategy. This strategy will be defined in terms

of SDSC data. The optimal SDSC maximizes the player’s expected utility, less the

costs of information as described in the preceding section. Specifically, the expected
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utility of a given SDSC is given by

EU i[P i] =
∑

θ∈{R,B}

µ(θ)
∑

c∈{a,r}

P i[c|θ] ∗ vi(c|θ),

where vi(c|θ) is the utility of player i choosing action c in state θ.

What adds an extra level of difficulty in strategic settings is that one’s vi(c|θ) are

themselves an expected utility, being a function of the SDSC of their opponent. Due

to symmetry, I will limit discussion to that of the Red player1. For now, assume

that the Red player has some belief about the other player’s strategy. Specifically,

suppose they think that the Blue player has SDSC of PB[a|B] and PB[a|R], i.e. the

Red player believes the Blue player will accept a Blue deal with probability PB[a|B]

and a Red deal with probability PB[a|R]. Note that if the Red player chooses to

reject, their payoff will be vo regardless of the state of the deal. If the Red player

chooses to accept, however, their payoff depends both on the state of the deal, and

the likelihood of the other player choosing to accept in that state. Specifically,

vR(a|R) = PB[a|R] ∗ vH + (1− PB[a|R]) ∗ vo

vR(a|B) = PB[a|B] ∗ vL + (1− PB[a|B]) ∗ vo

where PB[a|R] is the probability that the Blue player accepts an unfavorable deal,

and PB[a|B] is the probability that the Blue player accepts a favorable deal. I can

then write:

vR(a|R) = vo + PB[a|R](vH − vo)

vR(a|B) = vo − PB[a|B](vo − vL)

As already established, the state-dependent utilities of rejecting are constant, vR(r|R) =

vR(r|B) = vo. With these state-dependent action utilities and the cost parameter λR,

one can fully solve the Red player’s optimization problem, conditional on their beliefs

about the Blue player’s error rates.

To solve for the optimal strategy, I take the approach designed by Caplin, Dean,

and Leahy (2019) (henceforth CDL) using optimal consideration sets. An action

1The Blue player’s best response will be identical to that of the Red player’s, simply with the
labels for each state switched in their SDSC.
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(accept or reject) is said to be in the player’s consideration set if there is a strictly

positive probability of that action being chosen. Thus there are then three cases to

consider: indiscriminate acceptance, indiscriminate rejection, and mixing between the

two. Naturally, the last case also involves determining with what probabilities each

action is chosen in each state.

From CDL Proposition 1, an SDSC is optimal if and only if for all c ∈ {a, r},

∑
θ∈{R,B}

ev(c|θ)/λ
R
µ(θ)∑

b∈{a,r} P (b)ev(b|θ)/λR
≤ 1 (1)

with equality if c is chosen with positive probability. I can then use this to develop

expressions for when a player best responds by acquiring no information and either

indiscriminately accepting or indiscriminately rejecting the deal.

The player will best respond by unconditionally accepting the deal (i.e. PR[a] = 1)

when
1

2
e

(vo−vL)(PB [a|B])

λR +
1

2
e
−(vH−vo)P

B [a|R]

λR < 1

Note that a player is more likely to play this strategy if they believe their opponent

will be accepting a significant number of unfavorable deals and rejecting a significant

number of favorable deals. As λ decreases, these mistakes have to be larger and larger

for it to still be optimal to only accept (because attending is becoming much cheaper).

The player will best respond by unconditionally rejecting the deal (i.e. PR[a] = 0)

when
1

2
e
−(vo−vL)(PB [a|B])

λR +
1

2
e

(vH−vo)P
B [a|R]

λR < 1

which occurs when the other player is making fewer errors–rejecting a significant

number of unfavorable deals and accepting a significant number of favorable deals.

As λ decreases, the opponent has to be making very few mistakes for a player to

continue unconditionally rejecting.

Finally, I consider the intermediate case in which the player accepts and rejects with

positive probability in each state. First, note that this is the only possible case outside

of the two described above. A case in which P [a|B] = 0 and P [a|R] > 0 (or vice

versa) would require one to perfectly separate the two possible states. Because the
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marginal cost of attention is infinitely high at such values, it will never be an optimal

solution to the rational inattention problem. Because the two previous conditions are

disjoint, and there are only three possible consideration sets, it directly follows that if

neither of them is satisfied, the player will have both actions in their consideration set.

What remains to be shown is what SDSC a player will optimally best respond with

specifically. To find this, I first solve for the unconditional accept probability using

the equation (1) for c = a, holding at equality since a is present in the consideration

set2. This yields

PR[a] =
evo/λ

R − µevR(a|R)/λR − (1− µ)ev
R(a|B)/λR

e−vo/λR(evR(a|R)/λR − evo/λR)(evR(a|B)/λR − evo/λR)
.

The conditions on SDSC then are direct functions of the above description, utilizing

the conditions found in Matějka Mckay (2015):

PR[a|R] =
PR[a]ev

R[a|R]/λR

PR[a]evR[a|R]/λR + (1− PR[a])evo/λR

PR[a|B] =
PR[a]ev

R[a|B]/λR

PR[a]evR[a|B]/λR + (1− PR[a])evo/λR
.

2.3 Nash Predictions

The preceding sections have shown that given an opponent’s SDSC, you can generate

optimal SDSC as a best response. A Nash equilibrium in this setting is then simply

a pair of SDSC (P i[a|R], P i[a|B]) for each i ∈ {R,B} such that each SDSC is a best

response to the other.

Trivially, there is always an equilibrium in which both players never accept any trade.

This is because if one player is always rejecting, the other player will always get

vo, regardless of the state or their action. Then, any inattentive SDSC (i.e. no

information acquired) is a best response, including the one which indiscriminately

rejects all deals.

The more interesting case is non-trivial Nash equilibria. It can be shown numerically

that there exists a unique non-trivial Nash equilibrium for a wide range of parametric

2The same PR[a] solves the expression for when c = a or c = r.
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(a) Changing Own Cost (b) Changing Opponent Cost

Figure 1: Nash Predictions

assumptions, so long as no player has too low of information costs. The problem is

fairly simple to solve numerically but does not have a closed-form solution. Thus

one must take known parameters (λi, vo, vH , and vL) and solve for the non-trivial

equilibrium. Figure 1 illustrates an example of such an equilibrium3

In a non-trivial equilibrium, numerical solutions demonstrate that as attention costs

increase, for either an individual or their opponent, the probability of accepting a

deal of either state increases. When costs become sufficiently high, both individuals

indiscriminately accept. The intuition of these equilibria is that higher attention

costs act as a sort of commitment device, allowing a player to tie their hands and

not discriminate much between the two states. As long as the other player does not

have such low costs that they can then take advantage of this player, the players can

engage in a higher amount of deal acceptance than when costs are low.

2.4 Best Response Dynamics: Level-K Predictions4

In addition to examining Nash behavior, I use Level-K theory to generate non-

equilibrium predictions for different levels of strategic sophistication. As is standard

in Level-K theory, I will assume that a Level-K player plays as if their opponent is of

type Level-(K−1). It is also worth noting that the following predictions are simply a

3These numerical solutions solve for Nash equilibrium under the parametric setting of the ex-
periment (vo = 30, vL = 10, and vH = 90). Figure 1 illustrates solutions of the Red player, with
solutions for the Blue player being identical, with labels switched. In Figure 1a the opponent cost
is fixed at λB = 20, while in Figure 1b own cost is fixed at λA = 20.

4Additional analyses and derivations for this section can be found in Appendix C.
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reasonable way to structure what I mean by strategic sophistication in such a setting.

The experiment will be designed to test predictions on behavior given any beliefs,

and not just the beliefs as determined in this theory. Discussions are limited to the

first 3 levels, Level-0 through Level-2, as predictions for behavior beyond these levels

have diminishing intuitive explanations, and because the levels provided are sufficient

in explaining any behavior present in the experiment.

2.4.1 Level-0

As with any Level-K analysis, one must first make some assumptions about how a

Level-0 player will play. The standard assumption is to assume the Level-0 player

plays all actions with equal probability. In this setting, I translate this to mean the

player chooses P [a|θ] = 1
2

for all θ. However, the only critical assumption is that a

Level-0 player has P [a|B] = P [a|R] (i.e. they do not acquire any information). In

other words, a Level-0 player in this game is not rationally attentive—they simply

indiscriminately accept or reject a deal with some constant probability.

2.4.2 Level-1

A Level-1 player then best responds to a Level-0 player. The essential intuition is

that a Level-1 player is rationally attentive but does not realize that their opponent

is also rationally inattentive. For the following specific predictions, the Level-0 player

is assumed to follow the specific P [a|θ] = 1
2

strategy, however as noted this is just for

clarity of presentation, and any P [a|θ] = p constant for each θ will suffice. Again,

analysis is presented for the Red player, noting that the Blue player will have the

same predictions, with the “good” and “bad” states reversed. A Level-1 player then

has the state-dependent utilities of accepting,

vR(a|R) = vo +
vH − vo

2
=
vH + vo

2

vR(a|B) = vo −
vo − vL

2
=
vo + vL

2
.

Using the result from the preceding section, one can then directly map out the SDSC

of a Level-1 agent as a function of vo, vL, vH , and λi. Crucially, since a Level-1 player

assumes they are playing against a Level-0 player, who is not rationally attentive, the

SDSC of the Level-1 player does not depend on the attention cost parameter of the
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Figure 2: Probability of accepting each color deal as a function of own attentional
cost for a Level-1 player

other agent, λ−i.

Figure 2 illustrates the optimal SDSC as a function of the player’s own attention cost

parameter. Notice that the probability of accidentally accepting an unfavorable deal

is strictly increasing in attention costs, while the probability of accepting a favorable

deal is non-monotonic. As attention costs go to 0, a player will perfectly distinguish

the two states and only accept in the favorable state. As attention costs get sufficiently

large, a player will indiscriminately accept, because of the assumption that deal’s are

ex-ante positive (vL+vH
2

> vo) and the fact that PB[a|R] = PB[a|B].

2.4.3 Level-2

A Level-2 player best responds to the behavior of a Level-1 player. From the previous

section, one can derive the SDSC of a Level-1 player as a function of their attention

cost parameter. The main takeaway for a Level-2 player is that their SDSC will be

a function of not only their own attention cost parameter but also the attention cost

parameter of their opponent. That is, a Level-2 player is rationally inattentive, and

realizes their opponent is also rationally inattentive.

Figure 3 illustrates the optimal SDSC as a function of one’s own attention cost pa-

rameter, holding the other fixed. One finding of interest is that dynamics concerning

one’s own costs depend crucially on the cost of one’s opponent. Figure 3a shows a
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(a) λB Low (b) λB High

Figure 3: Probability of accepting each color deal as a function of own attentional
cost for a Level-1 player, holding the attention cost of opponent constant at either a
high or low level

case in which the opponent has low costs of attention, while Figure 3b shows one in

which they have high costs of attention.

If the opponent has low enough costs (underneath some threshold), then as their

own costs increase, the probability of accepting favorable deals decreases. If the

opponent has higher costs, however, then the probability of accepting unfavorable

deals increases. The intuition is that a high-cost Level-1 opponent tends to accept

most deals, making the ex-ante benefit from accepting high. A low-cost Level-0

opponent, however, tends to only accept their own favorable deals, making the ex-

ante benefit from accepting low. Thus as own costs become sufficiently large, one who

faces a low-cost opponent rejects all deals, while one who faces a high-cost opponent

accepts all deals.

Figure 4 holds fixed one’s own attention cost parameter, and varies that of the op-

ponent. If an opponent has sufficiently low attention costs, a Level-2 player assumes

they will do a very good job of discerning the state of the deal, and thus the benefits

of paying costly attention are very low. Because of this, with low opponent costs, a

Level-2 player will always reject. If the opponent has some sufficiently high costs, the

Level-2 player assumes their opponent will accept all deals, and since the deals are

ex-ante optimal, there will be a positive rate of acceptance for both favorable and

unfavorable deals. Numerical analyses show a continuous mapping bridging these

two extremes, with the probability of accepting a favorable deal strictly increasing
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Figure 4: Probability of accepting each color deal as a function of opponent attentional
cost for a Level-2 player, holding fixed own attentional cost

with respect to opponent attention cost and, for the parameterizations relevant to the

experimental design, the probability of accepting unfavorable deals also increasing in

this cost.

3 Experimental Design: Main Treatment

The experiment is designed to test the ability of subjects to both anticipate and best

respond to the information acquisition of opponents in the game examined theoreti-

cally. In anticipation of heterogeneity in subject behavior, I utilize a within-subject

treatment that determines to what extent individuals best respond to the attention

costs of themselves and of their opponents. The main experiment consists of four

parts–three of them incentivized one of them a non-incentivized survey.

As the predictions in the theory section above rely on expected utility theory and

assume I can observe the utilities of certain rewards, I use probability points as my

incentivization scheme. That is, the earnings for an individual subject are points, val-

ued from 0 to 100, which indicate their probability of winning a $10 bonus payment,

in addition to a $10 completion payment. In my analysis, I can then normalize the

utility of the $10 bonus payment to be 100, and the points will then directly corre-

spond to their value in utility. To prevent hedging (especially concerning incentivized

belief elicitation), only one randomly selected question from the incentivized portion
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of the experiment for payment is chosen.

The experiment itself took place online via Prolific and using oTree software (Chen

et al 2016). I will save the discussion on the decision to implement this as an online

experiment versus an in-person experiment for after a description of the overall design.

3.1 Part One: Decision Making Task

The first part of the experiment serves two purposes: (1) introduce a real-effort

attention task to the subjects, which will be used later in the strategic portion of the

experiment, and (2) gauge individual level ability in this attention task. The attention

task used in this experiment is the “dot task”, which has been established as a reliable

task that rewards attentional effort with better outcomes (Dean and Neligh 2019).

The task consists of a square grid of red and blue dots. With 50% probability, there

are more red dots than blue dots (a “red grid”), and with 50% probability, there are

more blue dots than red dots (a “blue grid”). The task is then to determine whether

the grid is red or blue. Subjects were given a maximum of 30 seconds to determine

whether they think the grid is red or blue. A correct classification is rewarded 75

points, while an incorrect classification is awarded 25 points.

Because the strategic portion of the experiment will manipulate the difficulty of the

above task for both the subject and their opponent, subjects are introduced to two

difficulty levels in this part of the experiment. These difficulty levels are labeled

“100-Dot” and “225-Dot”. As the names suggest, a 100-Dot grid is a 10-by-10 grid

composed of 100 dots, and a 225-Dot grid is a 15-by-15 grid composed of 225 dots.

Another difference between the two grid types is the difference in the number of dots

between the “majority” and “minority” colors. On the 225-Dot grid, there are either

5 more blue dots (on a blue grid) or 5 more red dots (on a red grid). On the 100-Dot

grid, there are 8 more blue dots or 8 more red dots. Piloting designed to elicit the

difficulty of various dot tasks (only in decision-making settings) has determined that

these two tasks are of consistently different difficulty levels, with the 100-Dot task

being much easier than the 225-Dot task. Figure 5 illustrates an example of these

two grid types.

To elicit individual SDSC for each task, I utilize repetition. The two classification

tasks are repeated 15 times each, for a total of 30 rounds. Because I am eliciting
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Figure 5: 100-Dot Grid (Left), 225-Dot Grid (Right)

probabilities on the individual level, I did not want subjects to react to feedback,

or demonstrate learning over time. Thus, no feedback about whether a subject was

right or wrong on any particular round is provided until after the conclusion of the

experiment. For ease of instruction, and to familiarize subjects with the structure

of the strategic portion of the experiment, these 30 rounds are divided into 6 blocks

of 5 rounds each. Within each block, the type of grid (100-Dot or 225-Dot) remains

constant. Subjects are reminded of the upcoming grid type and the rules of the

decision before each round, with an additional screen indicating any changes before

each block.

3.2 Part Two: Strategic Game

Part two is the central part of the experiment. It consists of exactly the game de-

scribed in Section 3. The values for vo, vH , and vL are set at 30 points, 90 points, and

10 points respectively. These values were chosen to give the data the “best chance” at

observing differences in subject errors with respect to opponent task difficulty. First,

note that the ex-ante optimality of accepting a deal is very salient. If both agents ac-

quire no information at all and indiscriminately accept the deal, the expected payout

is 50 points, versus 30 points for rejecting the deal.
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At the start of this part of the experiment, subjects were assigned to one of two roles:

Red player and Blue player. To avoid confusion and because the game is essentially

symmetric, subjects were assigned to the same role throughout the experiment. Play-

ers were then told they would be randomly re-matched with a player of the other role

type over 120 rounds. In each round, subjects played the game described in Section

3. Both players knew that a “Red Deal” and a “Blue Deal” were each equally likely.

Their choice each round was to accept or reject the deal. A deal was “made” if both

players accepted the deal. This would give 90 points to the player whose role color

matched that of the deal and 10 points to the other player. If either or both players

rejected the deal, they would each receive 30 points.

As in Part One of the experiment, subjects were again shown either 100-Dot or 225-

Dot grids. The additional manipulation in this part of the experiment was to also

vary their opponent’s grid type each round. Like in Part One, this was divided into

8 blocks of 15 questions each. Within each block, the grid type for the subject and

their opponent remained constant. Crucially, subjects were repeatedly reminded of

their grid type and their opponent’s grid type. Thus for each subject, I can elicit their

SDSC in all four possible attentional setups. Again to avoid feedback and learning

effects in a repeated game environment, no feedback was provided to subjects during

this stage of the experiment.

Each subject had a random order of the four task difficulty combinations, and they

went through this order twice sequentially to make up the 8 blocks. This structure

allows me to elicit beliefs about opponent behavior after only the blocks in the second

half of the experiment (to make sure eliciting such beliefs did not change subsequent

behavior).

Belief elicitation occurred at the end of blocks 5 through 8. At the beginning of Part

2, subjects were told there would be two additional questions at the end of these

blocks but were not told they would be belief elicitation questions specifically. The

goal of these questions is to elicit the subject’s beliefs of their opponent’s SDSC.

To do so in a clearly and understandably manner, subjects were asked to estimate

the percentage of Red deals, and of Blue deals that their opponents accepted in the

last block. Payment would then be made via a quadratic scoring rule5, where their

5Because a quadratic scoring rule with prizes in probability points is equivalent to the binarized

18



payment would be the maximum of 100− Error2

25
and 0 points, where the Error is the

difference in percentage points between their belief and the actual probability of red

or blue deals their opponents accepted in the previous block.

3.3 Part Three: Other Measurements

After the above rounds, a few potential co-variates are elicited. First, subjects play

a variation of the 11-20 game proposed by Arad and Rubinstein (2011). Subjects are

randomly assigned into pairs and are each told to request a number of points between

51 and 60. Subjects receive the number of points they request, plus an additional 20

points if they request exactly one less point than their opponent. Arad and Rubinstein

show that this is an easy-to-explain game that elicits the level of strategic sophistica-

tion of an individual. By measuring strategic sophistication through a separate game,

I can verify that the subject pool is not unusually sophisticated or unsophisticated in

comparison to what is usually found in the literature. It will also allow me to analyze

behavior for subsets of the sample who score as more sophisticated in this measure.

Next, subjects are asked the three-question Cognitive Reflection Test (CRT) (Freder-

ick, 2005) as another measurement of cognitive ability. Previous literature has often

shown a correlation between this measurement and strategic sophistication, as well as

performance in other economic games. This quiz was not incentivized, which is the

standard approach in economic experiments involving the CRT. Again, this measure

will allow me to assess the cognitive abilities of the subject pool and analyze behavior

in the experiment for subsets who score higher on the instrument.

Finally, subjects filled out a brief survey. Aside from basic demographics (gender and

education level), subjects were also asked to explain their strategy in part two of the

experiment. This is done through a series of questions. First, subjects were asked to

what extent they attempted to actually count the dots in each attentional setup of

the game. They were then asked how their strategy depended on the task of their

opponent for each of their own tasks. Finally, they were asked to give a free-form

description of their overall strategy.

scoring rule (Hossain and Okai, 2013), this scoring rule is incentive compatible regardless of risk
preferences. Subjects were also told that it is in their best interest to report true beliefs, as is
advised in the literature. The exact payment structure was available via a graph and the actual
equation on a separate page that subjects could get to if desired
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3.4 Online Implementation of the Experiment

The experiment was conducted online via Prolific, and I will argue that rational inat-

tention experiments (in general), and more importantly strategic rational inattention

experiments, are particularly well suited for such an environment. Firstly, an online

environment allows subjects to go through the experiment at their own pace. In the

above experiment, subjects could choose, for example, to inattentively click through

each round of decision-making, and finish the experiment extremely early. Likewise,

subjects could spend up to 30 seconds on each task, which could end up taking well

over an hour. Allowing for both of these, and the spectrum in between, allows sub-

jects to acquire information in a truly flexible and endogenous way—more in line

with the spirit of rational inattention. An online environment allows for this kind of

flexibility, whereas a traditional classroom lab experiment typically has a structure

where participants can not leave the room until all subjects have completed the ex-

periment. This can create unwanted social pressure effects (such as those to finish the

experiment quicker than a subject would otherwise prefer) or cause subjects to spend

more time than usual (since they would otherwise be sitting in a lab with nothing

to do). Both of these issues are difficult to control for and could contaminate any

treatment effects the researcher may be interested in.

The above underscores why this is an especially important problem for strategic in-

formation acquisition experiments. In most classroom labs, it becomes very obvious

the average response time of decisions of the other subjects in the lab (via sounds

of clicking mice and keyboards or seeing other subjects sitting idly). This has the

potential to create large session-level effects and introduces a noisy signal of opponent

strategy that is difficult to model or control for.

In an online environment, subjects can play the game at their own pace. Subjects

proceed through all stages without waiting for any other player’s actions. Because no

feedback is provided, this is feasible in the design outlined above. Subjects are told

that payments will be calculated once all subjects in the session have completed the

experiment, no later than 7 days after that subject has finished. At this time, subjects

are given a Qualtrics survey link where they log in with their Prolific credentials and

are shown their award in points. These points then translate to their probability in

percent of winning a $10 bonus payment. I utilize the lottery mechanism designed by
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Caplin et al (2020) to credibly award the bonus with the correct probability. Subjects

are shown a timer synced to their computer system clock in milliseconds. They can

stop this clock once and only once, and the milliseconds in one’s and ten’s constitute

a random number, where a number less than their point value results in the bonus

payment. Subjects have access to a practice version of this task before taking part in

the experiment, to credibly signal the randomness of the device.

4 Results

Sessions for the experiment took place in July and August of 2022. In total, 100

subjects completed the experiment online. Subjects were recruited and paid via

Prolific and participated in the experiment via oTree on their computer browser6

Demographically, all subjects were residents of the United States, had at least a high

school education, were fluent in English, and were between the ages of 18 and 30.

Subjects were also restricted from taking the experiment multiple times, and the

subject pool was balanced across sex7. The median duration of the experiment was

42.5 minutes, and the mean duration was 50.0 minutes. Average earnings were $15.50,

including the $10 participation fee.

4.1 Decision Task: Difficulty Validation

The first priority is to verify that the two tasks were of consistently different difficulty

levels. To do this, I examine the accuracy rate of classification during the decision-

making rounds. Recall that each participant played 15 rounds of each task type.

Figure 6 shows the average accuracy across the two tasks and the average difference

between the two, with error bars to indicate one standard error. In the 225-Dot task

61% of grids were correctly classified, while in the 100-Dot task this proportion was

84%.

Table A.1 in Appendix A presents results from a logistic regression and a linear

probability model of correctness on round, true color, and task difficulty, with errors

clustered at the individual level. Regression analysis confirms that the 225-Dot task is

6Subjects recruited through Prolific were explicitly told the experiment could only be performed
on a desktop or laptop computer, and not via tablet or mobile phone.

7This was to correct for Prolific’s recent over-representation of female participants, see
https://www.prolific.co/blog/we-recently-went-viral-on-tiktok-heres-what-we-learned
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Figure 6: Average accuracy by task (standard errors clustered by subject) and the
average difference in Part 1 of the experiment (decision-making task)

significantly more difficult than the 100-Dot task. In addition, there are no aggregate

round effects, nor any systematic differences in discerning red or blue images.

It is also of interest to examine any heterogeneity in ability across the two tasks.

There is indeed substantial heterogeneity in ability8. Figure 7 plots the probability

of correct classification in the 100-Dot task on the vertical axis and the probability

of correct classification in the 225-Dot task on the horizontal axis, with each point

representing an individual subject, along with the 45-degree line. While there is

substantial heterogeneity in accuracy across individuals, the vast majority of subjects

are more accurate in the 100-Dot task than in the 225-Dot task. This is evident by

the majority of points in Figure 6 lying above the 45-degree line. Just 12 of the 100

subjects did not have higher accuracy in the 100-Dot case (including 4 subjects who

had the exact same accuracy in the two tasks). These findings are indicative that the

tasks developed are almost universally ordered in terms of difficulty.

In addition, the probability of correct classification in the two tasks is ideally cal-

ibrated for this setting. The 225-Dot task is very difficult; however, the average

accuracy is 61% which is above what one could get by randomly guessing (i.e. the

8I use ability and effort interchangeably to mean “accuracy in classification”.
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Figure 7: Individual heterogeneity in decision task accuracy

task is difficult but not impossibly so). The 100-Dot task, on the other hand, has

a significantly higher accuracy rate of 84%, which is significantly lower than perfect

accuracy (i.e. the task is easy but not trivially so).

4.2 Strategic Behavior

Having validated the manipulation in task difficulty, I now turn to the subjects’

behavior in Part 2 of the experiment. For all results, a state will be referred to as

“favorable” if the color of the deal matches the color of the role, with a state being

“unfavorable” otherwise.

A basic first test that subjects understand the strategic setting is to verify that

P [a|Favorable] ≥ P [a|Unfavorable]. Table 1, Column 2 shows the mean difference in

acceptance probability between favorable and unfavorable deals for that attentional

setup. Column 3 reports p-values from a two-tailed, paired t-test between the proba-

bility of accepting a favorable and unfavorable deal for each setup. Column 4 reports

the percentage of subjects who accept weakly more favorable deals than unfavorable
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deals for each setup, while Column 5 reports the percentage of subjects who accept

strictly more favorable deals than unfavorable deals.

Own Task / Opponent Task Difference p-value Weak % Strict %

100 / 100 0.500 <0.001 92% 82%

100 / 225 0.495 <0.001 93% 83%

225 / 100 0.168 <0.001 86% 69%

225 / 225 0.137 <0.001 80% 64%

Table 1: Attention checks for strategic rounds, columns 4 and 5 report proportion
of subjects with weakly and strictly positive differences between accepting favorable
and unfavorable deals

Average differences are highly significant and are non-negative for a large majority

of the subjects. Note that 20% of subjects have strictly negative differences in the

225/225 setup. This is largely an artifact of a higher proportion of subjects inatten-

tively guessing in the more difficult settings. Nevertheless, 80% compliance in the

worst-case scenario is more than sufficient in such an experiment.

I will next examine the SDSC of subjects across attentional setups. Figure 8 visualizes

the average data of all 100 subjects, with standard errors clustered at the level of

the subject and difficulty level9. There is a significant effect of own-task difficulty

on accepting both favorable and unfavorable deals. Table 2 shows the difference

in acceptance probability, holding fixed the opponent difficulty and favorability of

the deal. Column 2 shows the difference of P [a|Own 100-Dot] − P [a|Own 225-Dot],

Column 3 shows the p-value of the corresponding paired t-test, and Column 4 shows

the percentage of subjects whose individual effect is in the same direction as the group

effect. The findings demonstrate that, almost universally, subjects who face the more

difficult task accept far fewer favorable deals, and far more unfavorable deals. The

average difference between accepting favorable deals and accepting unfavorable deals

is roughly 15.2% for those with 225-Dot tasks, while this number is 49.8% for those

with 100-Dot tasks.

Despite the above facts, Figure 8 also shows that there is no aggregate effect of

9Clustering in the strategic setting will be at the subject and own difficulty level because standard
errors of residuals are likely to be different for the two tasks.
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Figure 8: Probability of Accepting Favorable and Unfavorable Deals by Setup

Opponent Task / Favorability Difference p-value Proportion

100 / Favorable 0.172 <0.001 83%

225 / Favorable 0.159 <0.001 80%

100 / Unfavorable -0.160 <0.001 85%

225 / Unfavorable -0.200 <0.001 89%

Table 2: Differences in probability of accepting a deal when given a 100-Dot task and
a 225-Dot task, holding favorability of deal and opponent task fixed, with column 4
indicating the proportion of subjects with the same sign as the aggregate
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opponent difficulty on subject SDSC. There is no significant treatment effect of the

opponent’s task on the probability of accepting in either a favorable or unfavorable

state. Recall from the theory section that insensitivity of behavior to the opponent’s

task is a defining feature of “Level-1” strategic behavior. Subjects who have a higher

level of sophistication should decrease their probability of accepting both favorable

and unfavorable deals in light of an easier opponent task. This is because opponents

facing an easier task (1) accept more deals that would be favorable to the opponent

(and thus unfavorable to the opponent) and (2) reject more deals that would be

unfavorable to the opponent (and thus favorable to the subject). This causes the

expected value of accepting a favorable or unfavorable deal to decrease, which the

theory then claims should lead to a decrease in the probability of accepting either

type of deal.

Mirroring Table 2, Table 3 shows the difference in acceptance probability, holding

fixed own difficulty and deal favorability. Column 3 shows the p-value of the corre-

sponding paired t-test, while Columns 4-6 show the percentage of subjects where the

difference (225-Dot opponent minus 100-Dot opponent) is positive, equal, and neg-

ative, respectively. These findings again suggest that there is no aggregate effect of

Own Task / Favorability Difference p-value % Pos % Equal % Neg

100 / Favorable 0.004 0.77 40% 21% 39%

225 / Favorable -0.009 0.67 39% 19% 42%

100 / Unfavorable -0.001 0.92 41% 18% 41%

225 / Unfavorable -0.040 0.06 46% 17% 37%

Table 3: Differences in probability of accepting a deal when facing 225-Dot opponent
and 100-Dot opponent, holding favorability of deal and own task fixed, with columns
4-6 indicating the proportion of subjects with a difference of each sign

the opponent’s task on SDSC. Individual behavior appears to be approximately sym-

metric around this mean 0 difference, suggesting that deviations from this aggregate

value are more likely to be noise than systematic heterogeneity.
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To confirm this more rigorously, I run both logistic10 and linear regressions of:

yit = β0 + β1Own100it + β2Opponent100it + β3Own100it ∗Opponent100it + β4t+ εit

where yit is an indicator for when subject i accepts a deal in round t. The regression

is run twice—once for when the deal is favorable, and once for when it is unfavorable.

I do this because the coefficients on the independent variable are likely to be different

in each case. “Own100” is an indicator for when a subject faces a 100-Dot task in a

given round and “Opponent100” is an indicator for when a subject’s opponent faces

a 100-Dot task in a given round. In addition, errors are clustered on the subject and

own task difficulty levels. The results for these regressions are presented in Table A.2

in Appendix A.

First, note that own task difficulty is highly significant for either acceptance proba-

bility. The effect of Own100 is large and positive for the favorable case (i.e. people

correctly accept more favorable deals), and large and negative for the unfavorable

case (i.e. people correctly reject more unfavorable deals). The opponent task is only

significant (p < 0.10) in the unfavorable case, suggesting subjects make slightly fewer

(roughly 3%) mistakes in accepting unfavorable deals when their opponent has an

easy task. However, the opponent’s task is not at all significant for the favorable

case, and the interaction terms are not significant in either case. Finally, another

worry with any experimental study involving many repeated tasks is that perfor-

mance will change over time due to fatigue or learning. This is especially crucial to

check in this setting, as my analysis implicitly assumes that behavior in each game

is independent of the other games (this assumption allows one to treat an individ-

ual’s probabilities of accepting deals in various states as true SDSC in the rational

inattention sense). The coefficients on Round support this assumption, which is also

supported by previous experimental tests of rational inattention (Dean and Neligh,

2017).

4.2.1 Assessing Possible Heterogeneity

While Table 3 provides suggestive evidence that the aggregate results from the logistic

regression are unlikely to be masking meaningful individual-level heterogeneity, I now

10The response variable for the logistic equation is log yit.
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provide more exhaustive support for this claim.

For each subject i I run the linear probability model of

yit = βi0 + βi1Own100it + βi2Opponent100it + βi3Own100it ∗Opponent100it + εit

for favorable states and for unfavorable states, where once again yit is a dummy

indicator for accepting the deal. Note that by excluding the round variable, the

above linear probability regression gives the true marginal probabilities of each of the

independent variable dummies. Given the lack of a time trend in the aggregate data,

this choice is without much loss.

This results in a collection of βi coefficient estimates for each individual. Because

this is a linear probability model and not a logistic model, these coefficients are

directly comparable across individuals. My primary interest lies in the heterogeneity

of coefficients on the opponent task’s, and the interaction between the opponent’s

and own task. Thus I create a new set of four coefficient estimates for each individual

(opponent and interaction coefficients for favorable and unfavorable regressions).

On this new data set of coefficients, I run the mixture models cluster analysis used

by Brocas et al (2014) via the mclust package in R (Fraley and Raftery, 2007). This

analysis assesses any possible heterogeneity by calculating possible clusters of up to 9

groups using 14 possible models and then choosing the combination with the highest

Bayes Information Criterion (BIC). The benefit of this approach is that it assesses

any possible heterogeneity without assuming the exact nature of this heterogeneity,

or the number of possible clusters.

The results of this clustering analysis support the hypothesis that there is very little

meaningful heterogeneity in the subjects’ sensitivity to their opponent’s task. Figure

A.1 in Appendix A shows the BIC value for each model and each number of clusters

(up to 9). The winning model is that in which the clusters have ellipsoidal shape,

equal volume, and equal orientation (EVE) and with 2 clusters. These two clusters

consist of 95 subjects and 5 subjects. Table 4 reports the average coefficient values

for each cluster.

Figure A.2 in Appendix A shows the scatter plots associated with this classification.

The classification again confirms that by and large that the aggregate effects are
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Table 4: Mean Parameter Values for Optimal Clusters

Cluster 1 Cluster 2

βF2 0.0108 -0.3760

βF3 -0.0065 0.3791

βU2 -0.0209 -0.3926

βU3 0.0135 0.5007

n 95 5

not hiding meaningful heterogeneity. 95% of subjects fall into a cluster in which

the average percentage effect of the opponent having an easy task is between 0%

and 2%. Five subjects can be categorized into a cluster where these differences are

much larger, indicating an average percentage effect of up to 39%. This suggests that

while some subjects appear to have higher levels of strategic sophistication, the vast

majority of participants behave extremely similarly to Level-1 types–with behavior

invariant to the attentional costs of their opponents. This proportion of Level-1 types

is far greater than commonly found in other economic games—an exhaustive study

by Georganas et al (2015) finds between 28% and 71% proportion of Level-1 players,

depending on the game.

4.3 Beliefs

The preceding section demonstrated a strong effect of own task on behavior, and

essentially no effect of the opponent’s task on behavior. While this offers strong evi-

dence of an out-sized lack of strategic sophistication, it is yet unclear what mechanism

is underlying this behavior. There are two clear possibilities: subjects have difficulties

in anticipating opponent behavior (i.e. their beliefs are incorrect), or the subjects’

information acquisition is not sensitive to incentives (i.e. the subjects are not ratio-

nally inattentive and ace fixed abilities to discern the two states in each task). The

following two sections, alongside a follow-up experiment described thereafter, provide

support for the first of these two hypotheses. The current section shows that beliefs

are largely incorrect and noisy. The following section shows that subjects largely

seem to adjust their attention in response to what they perceive to be the incentives

of doing so, which are themselves functions of these incorrect beliefs.
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Figure 9: Beliefs of Opponent Behavior by Setup

As a reminder, all subjects are asked to report their beliefs about how frequently their

opponents accepted deals of either color in the preceding block (i.e. under the preced-

ing block’s attentional setup). That is, I elicit, in an incentive-compatible manner,

their beliefs about the SDSC of their opponents. Figure 9 shows the analogous plot

of Figure 8, however, this time showing the subjects’ mean beliefs of their opponents

accepting in the various attentional setups. Note that the figure takes the opponent’s

perspective in labeling a state as “favorable” or “unfavorable” (so that the figure is

exactly comparable to that of Figure 8).

One minimal check to ensure people understood the strategic setup of the game is to

see whether they expected their opponents to accept more often in their opponent’s

favored state. The findings confirm this on the aggregate. Paired t-tests show that

subjects believe opponents have a 15.8 and 15.3 percentage point higher acceptance

rate in favorable deals over unfavorable deals when the opponent has a 225-Dot task

and the subject has a 225-Dot and 100-Dot task, respectively (p < 0.001 for both

tests). When the opponent has a 100-Dot task, these numbers are 25.6% and 26.2%

(again with p < 0.001 for each test).

Comparing the above numbers to the actual SDSC of the subjects, however, reveals

that subjects hold largely incorrect beliefs about opponent behavior and information

acquisition. Table 5 is analogous to Table 1, however, it now shows the differences

between reported beliefs that an opponent accepted their favorable deal versus their
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unfavorable deal. Note that Table 1 shows that the average difference in accepting

Own Task / Opponent Task Difference p-value Weak % Strict %

100 / 100 0.262 <0.001 93% 66%

100 / 225 0.153 <0.001 90% 54%

225 / 100 0.256 <0.001 91% 63%

225 / 225 0.158 <0.001 91% 57%

Table 5: Differences between reported beliefs that opponent accepted their favorable
versus unfavorable deal, columns 4 and 5 report proportion of subjects with weakly
and strictly positive differences in beliefs

favorable and unfavorable deals is nearly 50% for subjects, while the analogous dif-

ference in beliefs is only 26%. The gap between differences in Table 1 for the 100-Dot

task and the 225-Dot task is approximately 35%, while this gap is only 10% for be-

liefs. However, Table 5 also shows that people clearly understood the basic strategic

setup—columns (4) and (5) show that a vast majority of subjects understood their

opponent would be selecting more deals of the subject’s unfavorable color than that

of the subject’s favorable color. However, a very high percentage of subjects, believe

these two probabilities to be equal, as demonstrated by the large differences between

columns (4) and (5).

To further examine these findings, Figure 10 displays histograms for the differences in

Favorable/Unfavorable acceptance beliefs under each attentional setup. This figure,

along with Table 5, indicates that a large number of subjects with what are essentially

Level-1 beliefs–i.e. they roughly believe P [a|R] = P [a|B]. While very few subjects

report an incorrect sign (negative) for this statistic, the main takeaway of the figure

is the sharp concentration of subjects with reported beliefs of opponent favorable and

unfavorable acceptance probabilities which are extremely close to one another.

The above could represent two possible mechanisms. Subjects either truly believe

their opponents are acquiring very little information, or they have a large degree of

cognitive uncertainty about their opponent’s information acquisition, and so for all

intents and purposes, they behave as if their opponent is acquiring very little infor-

mation. While the present experiment cannot distinguish these two specific mecha-

nisms, the second seems more plausible and will be discussed further in the paper’s
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Figure 10: Histogram of difference in favorable and unfavorable accept belief, by
attentional setup

conclusion.

Finally, Figure 9 also clearly shows that there is no significant effect of own task on

beliefs about opponent behavior. This suggests that the players’ beliefs are consistent

with no larger than two levels of strategic sophistication, and also indicates that the

discrepancies found are an effect of their opponents’ task only, and not a reflection of

the subjects’ own immediate experience.

4.4 Beliefs as the Mechanism for Strategic Unsophistication

Whatever the mechanism behind subjects’ largely incorrect beliefs about opponent

SDSC, it is clear that even under incentivization they are largely unable to correctly

anticipate opponent behavior. The next step is to see whether the subjects themselves

acquired information as if their opponents were playing according to these incorrect

beliefs.

To do this, I run the same linear regression as presented in Table A.2 but instead

substitute two belief variables—“BA” and “BD”—along with their interaction terms

with the dummy indicating a 100-Dot task for the subject, in place of of dummies for
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the opponent task. Here, “BA” refers to the unconditional belief that their opponent

chose to accept, calculated by taking the average of the two belief elicitations for that

round’s attentional setup. “BD” refers to the difference in beliefs of the opponent

accepting deals in their favorable state and their unfavorable state for the relevant

attentional setup, i.e. the values illustrated in Figure 9. These two transformations

of the subjects’ elicited beliefs were chosen instead of the two raw beliefs because of

the high correlation between a high belief of acceptance of a favorable deal with that

of an unfavorable deal. Thus coefficients on either of these values alone are difficult to

interpret independently of the other coefficient. The interpretation of the coefficient

on “BA” then is how sensitive a subject’s behavior is to the unconditional likelihood

of their opponent accepting, while the coefficient of “BD” is the causal impact of

one’s beliefs about the extent of their opponent’s information acquisition on their

behavior. The dummy for the opponent task was excluded from these regressions as

it is highly correlated with beliefs (as seen in Table 5), leading to multicollinearity

concerns. Once again, I run this regression twice, for favorable and unfavorable deals,

and errors are clustered on the combination of own task difficulty and subject. The

coefficients on the relevant interaction terms then indicate how these effects change

when the subject is shown a 100-Dot task.

Table 6 presents the results of this regression, while table A.3 in Appendix A shows

the analogous logistic regression. Columns (1) and (3) regress on the entire sample,

while Columns (2) and (4) regress on only the subset with non-negative values for all

four “BD” measurements (76 out of 100 subjects).

In summation, the above analysis suggests that (1) subjects’ reported beliefs have sig-

nificant predictive power on their choice behavior, and (2) the signs on these reported

beliefs mostly align with what rational inattention theory predicts. However, due to

the caveats explained above, caution must be used when interpreting these results

with respect to the reliability of elicited beliefs and whether these beliefs are merely

a reflection of own behavior. For these reasons, I conduct a follow-up treatment, to

be described in Sections 6 and 7.
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Table 6: Linear Probability Regression of Accept, by Favorability

Dependent variable:

Accept (Favorable) Accept (Unfavorable)

(1) (2) (3) (4)

Constant 26.722∗∗∗ 23.519∗∗∗ 2.576 −1.013

(2.628) (2.997) (2.536) (2.787)

Own100 32.339∗∗∗ 29.962∗∗∗ −19.498∗∗∗ −23.020∗∗∗

(3.325) (3.905) (3.061) (3.342)

BD −0.127∗∗∗ −0.139∗∗∗ −0.234∗∗∗ −0.236∗∗∗

(0.031) (0.037) (0.031) (0.035)

BA 0.795∗∗∗ 0.842∗∗∗ 0.996∗∗∗ 1.045∗∗∗

(0.035) (0.036) (0.033) (0.032)

Own100*BA −0.403∗∗∗ −0.347∗∗∗ 0.074 0.133∗∗∗

(0.050) (0.053) (0.046) (0.044)

Own100*BD 0.234∗∗∗ 0.291∗∗∗ −0.103∗∗∗ −0.065

(0.038) (0.045) (0.039) (0.045)

Round −0.004 −0.007 0.013 0.004

(0.016) (0.018) (0.016) (0.018)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.5 Response Times as Attentional Input in Games

The previous literature has shown that response times are an important input in the

information acquisition process and that there exists correlations with both mental

effort and choice accuracy within a given task (Caplin et al, 2020). Thus, an additional

avenue of analysis is to analyze these response times in the two parts of the experiment

and under different attentional setups. While the previous literature has shown that

these comparisons may not be entirely useful between tasks, they can demonstrate

whether people are paying more or less attention within a task, for example in response

to incentives. One reason they are not especially useful across tasks is that the

“production function” of attention may look very different in different tasks. In

the present experiment, for example, counting a large proportion of dots is a viable

strategy in the 100-Dot case, whereas it is not in the 225-Dot task11. Observing

reaction times within opponent tasks then shows whether subjects altered this critical

attentional input as a response, even if their ultimate behavior showed little if any

response.

Table A.4 in Appendix A shows linear regression under each task, with columns

(2) and (4) also including belief data as independent variables. There is a slightly

significant negative effect of the opponent having a 100-Dot task on response time

under the specification including beliefs where the subject faces 225-Dot tasks, but the

response time analysis is largely reflective of the behavioral analysis—there is little to

no effect of opponent task on how much time subjects spent on a given task. There is

also a strong significant positive effect of the level of attentiveness one believes their

opponent has, “BD”, on response times–indicating that subjects spend more time

examining a 225-Dot grid when they believe their opponent to be separating their

stochastic choice more effectively. One interpretation of this could be that subjects

spend more time when motivated to avoid “being taken advantage of” and accepting

unfavorable deals. In Appendix B, Tables B.8 - B.11, I run equivalent regressions as

those shown in Table A.2 and Table 6, except the samples are restricted to those who

spent an average length of time on each decision task above various thresholds. As

this threshold is increased, the effect of the opponent’s task on accepting becomes

more significantly negative in the unfavorable case. This suggests that those who are

11This observation was present in many open-ended survey responses asking about player strategy,
as well as questions about how often they counted dots across tasks.
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already spending a larger amount of time on the task do indeed slightly adjust their

rate of “mistaken accept” to the task of their opponent. Regressions on beliefs report

the same effects as those found in Table 6.

4.6 Survey Data and Correlates with Other Measurements

4.6.1 Survey Explanations of Strategy

In addition to looking strictly at the behavior of subjects to see how they respond

to opponent incentives, one can also look at subjects’ direct verbal explanations of

their strategy in the experiment. At the end of the experiment, subjects are asked

to explain, via a text box, three questions to this extent. These questions ask: (1)

the subject’s general strategy in the strategic rounds of the experiment, (2) how their

strategy depended on the task of the other player when the subject had a 100-Dot

task, and (3) how their strategy depended on the other’s task when the subject had

a 225-Dot task12.

In these open-ended responses, the overwhelming number of subjects admitted that

their strategy did not depend on the task of their opponent. Out of 100 subjects, only

30 referred to the opponent’s task affecting their strategy in response to any of the

three questions above. This is despite subjects being fully aware of the game’s strate-

gic setup (subjects were forced to answer all comprehension questions successfully,

also viewable in Appendix D). This supports the conclusions made by the behavioral

data and elicited belief data—subjects simply did not behave as if their opponents

were rationally inattentive.

4.6.2 11-20 Game and Cognitive Reflection Test

While the above shows that subjects had a large lack of strategic sophistication in

this setting, it is still necessary to show that this lack of strategic sophistication is

out-sized, in that it is larger than is typically found in experimental settings. Almost

no subjects exhibit a level of sophistication past “Level-1”, whereas typically Level-2’s

are quite common in the data. To ensure the large proportion of lower levels is not

simply due to a lower level of sophistication present in online subjects from Prolific,

one can examine the behavior in the 11-20 game which was given to subjects at the

12Exact wording available in Appendix D
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end of the experiment, before the survey and payment screens.

As a reminder, in this game subjects were matched into pairs and asked to request a

number of points from 51 to 60. They received the amount they requested but would

receive a 20 point bonus if they requested exactly 1 less point than their opponent.

Note that this is the same game as in Arad and Rubinstein (2011), but with a flat

rate of 50 points added to all payments. Arad and Rubinstein show that there exists

a clear mapping from requests to levels of strategic sophistication. A request of 60

would represent the request of a “Level-0” player, making 59 the request of a “Level-1”

player, and so on.

Figure A.3 in Appendix A shows a histogram of requests by all 100 subjects in the

experiment. The most frequent request by far is 58 points, which corresponds to Level-

2 behavior. Only 11 subjects requested amounts consistent with Level-0 or Level-1

behavior. Overall, the distribution is not significantly different from that found in

Arad and Rubinstein (2011), and if anything shows a higher degree of sophistication

than in their experiments.

Likewise, examining scores on the Cognitive Reflection Test shows an average score

of 1.86 out of 3, which is comparable to that found in many university subject pools

(Frederick, 2005). So, the lack of strategic sophistication found in the main experi-

ment is not a product of simply a lower sophistication subject pool.

The above CRT and 11-20 game measurements can also be used as a way to restrict

the sample and see if those who score as “more sophisticated” in these measurements

behave on average in a more sophisticated way in the experimental game. Table 7

shows results from the linear13 regression of accepting a (favorable or unfavorable)

deal on own difficult, opponent difficult, their cross-product, and the round, with

errors again clustered on an individual and difficulty level pair. Columns (1) and

(4) report results for the sub-sample that requested less than 59 in the 11-20 game.

Columns (2) and (5) use the sub-sample that received a score higher than 1 on the

CRT, while (3) and (6) restrict the sample to those who scored a perfect score on the

CRT.

While there are no opponent effects when restricting the sample to those who behaved

13Logistic regression equivalent can be found in Table A.5 in Appendix A
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Table 7: Linear regression of Accept, Columns (1) and (4) restricted on sample that
requested less than 59 in the 11-20 game, Columns (2) and (5) restricted on sample
that received a score higher than 1 on the CRT, Columns (3) and (6) restricted on
sample that received a score higher than 2 on the CRT.

Dependent variable:

Accept (Favorable) Accept (Unfavorable)

(1) (2) (3) (4) (5) (6)

Constant 64.264∗∗∗ 67.482∗∗∗ 66.185∗∗∗ 48.770∗∗∗ 50.139∗∗∗ 48.848∗∗∗

(1.706) (1.956) (2.481) (1.805) (2.122) (2.632)

Own100 14.768∗∗∗ 18.743∗∗∗ 22.187∗∗∗ −18.505∗∗∗ −20.461∗∗∗ −22.308∗∗∗

(1.718) (1.890) (2.420) (1.869) (2.151) (2.661)

Opp100 −0.803 −4.096∗ −8.083∗∗∗ −1.785 −3.718∗ −6.288∗∗

(1.861) (2.161) (2.801) (1.931) (2.242) (2.824)

Own100*Opp100 1.673 1.691 7.145∗∗ 0.983 2.734 4.880

(2.425) (2.721) (3.470) (2.639) (3.035) (3.735)

Round 0.002 −0.023 −0.054∗∗ 0.022 −0.001 −0.031

(0.018) (0.020) (0.025) (0.019) (0.022) (0.027)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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in a sophisticated manner in the 11-20 game, there is an increasingly significant effect

when the sample is restricted to those who score highly on the cognitive reflection

test. Furthermore, the effect has a negative sign as predicted by the theory when

the opponent’s cost of attention decreases. As the opponent has easier access to

information, these subjects show a slight adjustment towards reducing the error of

accepting bad deals in favor of reducing the error of rejecting good deals. This further

supports the theory that a key mechanism behind the lack of strategic sophistication

in behavior is related to the cognitive difficulty inherent in the task of anticipating

and modeling an opponent’s information acquisition.

5 Discussion of Main Experiment Results

There are two major conclusions from the results of the preceding experiment. First,

there is an out-sized lack of strategic sophistication in this extremely simple economic

game environment. Second, the mechanism behind this behavior seems to be inaccu-

rate and perhaps uncertain beliefs. In each of the four attentional setups, the plurality

of subjects report beliefs that the probabilities an opponent accepts a favorable and

an unfavorable deal are essentially the same. These correspond to the beliefs held by

“Level-1” agents in the theoretical framework. Whether through simply incorrect be-

liefs or through cognitive difficulty in anticipating opponent behavior, these mistaken

beliefs seem to drive the “Level-1” behavior of agents.

Recall from the theoretical discussion that when facing an opponent with low atten-

tion costs (or one who has an easier task), the benefits of discerning a good and a

bad deal decrease. This is because accepting a favorable deal is likely to yield little

in the way of positive utility (since the opponent is likely to reject it), and accepting

an unfavorable deal is likely to be quite costly (since the opponent is like to accept

it). These features make accepting the deal much less attractive when compared to

the safe outside option acquired by rejecting it. Subjects do not respond in this way,

even though they themselves perform much differently when facing the two tasks.

Furthermore, they spend the same amount of time deciding on whether or not to

accept a deal regardless of the task of their opponent, again suggestive that players

are not adjusting their attention strategy in a way a strategic agent should. While

this attention does seem to respond to beliefs, a follow-up experiment seeks to verify
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that this is the case by removing the uncertainty about opponent behavior entirely.

6 Follow-Up Experiment Design

To further test whether the mechanism behind the results of the previous experiment

was indeed cognitive limitations of strategic thinking and forming correct beliefs,

I conducted a follow-up experiment. This follow-up experiment followed the exact

design of the main experiment, however instead of playing other subjects, subjects

played against computer players who followed a pre-specified strategy.

Specifically, instead of being matched with either “225-Dot” or “100-Dot” human sub-

jects, subjects are now matched with either “30:80 Computer” or “50:65 Computer”.

A 30:80 Computer accepts a deal of the subject’s color 30% of the time, and a deal of

the opposing color 80% of the time, with the 50:65 Computer being analogous. These

numbers were specifically chosen to mirror the average behavior seen by participants

in the main experiment. The subjects were told the meaning behind these labels on

multiple occasions during the instructions and constantly reminded throughout the

experiment. In addition, subjects were quizzed for their comprehension of the com-

puter behavior and had to correctly answer the quiz to proceed with Part 2 of the

experiment.

Just as in the main experiment, subjects played 120 rounds of these games, spread

across 8 equally sized blocks. There were 2 blocks for each combination of own-grid

task and opponent Computer type. Crucially, this is all entirely identical to the main

experiment, with the only difference being the removal of all uncertainty about their

opponent’s strategy. For the belief elicitation questions that appear at the end of

blocks five through eight, the subjects were asked to report their beliefs about how

often a randomly selected subject of the other role type behaved when they faced the

same block setup (own task and computer opponent) as the subject did.

7 Experiment Two Results

The experiment took place again virtually via Prolific, with subjects filtered to be

American residents between the ages of 18 and 30 with at least a high school educa-

tion, and again the subject pool was balanced across sex. Importantly, any subjects
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Figure 11: Probability of Accepting Favorable and Unfavorable Deal by Setup, com-
puter Treatment

who may have taken part in Experiment 1 were excluded. Experiment Two was

conducted on 40 subjects in September 2022.

First, I recreate the main analyses from the main experiment in the new treatment.

Now, instead of referring to opponent tasks, I instead refer to computer players. Recall

playing a “30:80” computer is equivalent in behavior to playing the average 100-Dot

opponent, while a “50:65” computer is equivalent in behavior to playing the average

225-Dot opponent. Figure 11 shows the probability of accepting a deal in favorable

and unfavorable states, for each attentional setup. Contrary to the main experiment,

there is a strong significant effect of computers opponent on subjects’ SDSC. When

subjects face a 30:80 computer (the payoff equivalent of facing a 100-Dot opponent in

the main experiment), they rationally shade their SDSC towards rejection–favoring

the reduction of accepting unfavorable deals over the reduction of rejecting favor-

able deals. When subjects face a 50:65 opponent, they prioritize reducing errors in

rejecting favorable deals over reducing errors in accepting unfavorable deals.

Table 8 shows the average differences in accept probability when the own task is 100-

Dot vs 225-Dot, holding computer opponent and favorability of the deal fixed. Note

that Column 2 shows the average difference, Column 3 shows the p-value from the

associated paired t-test, and Column 4 shows the percentage of subjects whose data

has the same sign as the average. Once again the vast majority of subjects make

41



fewer errors when given a 100-Dot task.

Computer Opponent / Favorability Difference p-value Proportion

30:80 / Favorable 0.196 <0.001 80%

50:65 / Favorable 0.133 0.001 83%

30:80 / Unfavorable -0.099 0.213 75%

50:65 / Unfavorable -0.176 <0.002 80%

Table 8: Differences in probability of accepting a deal when given a 100-Dot task
and a 225-Dot task, holding favorability of deal and computer opponent fixed, with
column 4 indicating the proportion of subjects with the same sign as the aggregate

Table 9, however, shows the average differences in accept probability when the com-

puter is 50:65 versus 30:80, holding the subjects’ task difficulty and favorability fixed.

Note that Column 2 shows the average difference, Column 3 shows the associate p-

value, and Columns 4-6 show the percentage of subjects whose difference is positive,

equal, and negative.

Own Task / Favorability Difference p-value % Pos % Equal % Neg

100 / Favorable 0.081 0.048 62.5% 15.0% 22.5%

225 / Favorable 0.144 0.002 70.0% 5.0% 25.0%

100 / Unfavorable 0.030 0.224 47.5% 17.5% 35.0%

225 / Unfavorable 0.114 0.007 57.5% 7.5% 35.0%

Table 9: Differences in probability of accepting a deal when facing 50:65 computer
and 30:80 computer, holding favorability of deal and own task fixed, with columns
4-6 indicating the proportion of subjects with a difference of each sign

In sharp contrast to the analogous Table 3, there is a strong positive effect of a

50:65 computer on the probability of accepting a deal for all cases except for when

subjects have a 100-Dot task and face an unfavorable deal (although at 40 subjects,

this experiment does have lower power than the main experiment). While Table 4

showed roughly equal amounts of subjects had a positive and negative sign for this

difference, now in all four cases significantly more subjects had a positive sign than a

negative sign. This again supports the argument that subjects were largely sensitive
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to computer opponent accuracy in a way that they were not towards human opponent

accuracy.

Finally, regression analysis can verify the above results, and findings are reported in

Table A.6 in Appendix A. Unlike in the main experiment in which there was little

if any effect of the opponent’s task on accept probability, there is a strong negative

effect of a 30:80 computer on accept probability in either favorability condition. Again

this supports the story of the subjects favoring the reduction of erroneously accepting

unfavorable deals when facing a more accurate computer opponent.

Following the analysis of response times in the main experiment which showed no

aggregate response toward the opponent’s task, I run analogous regressions on this

treatment. The results of this regression appear in Table A.7 of Appendix A. Unlike

the regression in the main treatment, the effect of having a 100-Dot task opponent

equivalent has a strong effect on response times, and the direction is negative. When

the computer is separating very well, subjects on average spend less time gathering

information, and simply reject the deal more often. This is indicative of a rational

allocation of mental resources, as the possible benefits of spending longer on the

task grow smaller in this case relative to the constant outside option that requires

no mental effort. Also of note, the average response times are significantly longer

in this treatment than in the main treatment. One possible explanation is that the

reduced uncertainty about opponent behavior translated to more explicit incentives

for information acquisition and thus more baseline mental effort devoted to doing so.

8 Discussion and Future Directions

In the simplest possible strategic setting where multiple agents face costs of infor-

mation, I have found that subjects play in a strategically unsophisticated manner.

They acquire information about the state of the world, but they do not acquire this

information as if they are playing a strategic opponent. Through careful analysis of

subjects’ elicited beliefs, I find that the mechanism through which this behavior oc-

curs is beliefs—subjects simply do not anticipate the information acquisition of their

opponents. In the follow-up experiment, I eliminate the possibility of this mechanism

by having subjects play against automated computers with a transparent strategy.

Contrary to the results of the main experiment, here subjects significantly adjust

43



their information acquisition strategies in the direction that the theory predicts.

One explanation for why strategic sophistication may be even lower in games with in-

formation acquisition than in standard settings may be “cognitive uncertainty”. The

cognitive uncertainty literature, beginning with Enke and Graeber (2019) suggests

that when people are cognitively uncertain, their “decisions are severely attenuated

functions of objective problem parameters”. In the present setting, this could mean

that the cognitively complex task of anticipating opponent information acquisition

causes people to systematically act as if playing a “Level-0” opponent (one with no

information acquisition at all). The high degree of “Level-1” beliefs and the generally

high variation in reported beliefs is suggestive of this explanation.

Yet another explanation lies within the work on costly depth of reasoning by Aloui and

Penta (2016). Again coinciding with the above phenomenon, anticipating opponent

information–and thus behavior–may be prohibitively costly given the incentives for

doing so. Thus while information acquisition responds sharply to the subjects’ own

task (in experiments 1 and 2), and incentives (in experiment 2), it does not respond

to the opponent’s task. Attention is costly in this setting, but not prohibitively so.

This simply may not be the case with the costs inherent in strategic reasoning.

Both of the above explanations also deliver insights into why the results of the present

paper differ qualitatively from those found in Martin (2016). In his paper, the author

finds that fully informed sellers in a trading game choose their pricing strategies in a

way that suggests they understand the learning behavior of their inattentive buyers.

In the present paper, subjects have to (1) anticipate the learning behavior of their

opponent, and (2) acquire costly information in light of the former. Thus in this game

subjects have to exert cognitive effort in both dimensions, whereas Martin’s setting

has each agent only exerting cognitive effort in one. In addition, his experiment does

not manipulate cognitive costs of information acquisition, making the experiment less

well-suited to answer the questions asked in the present paper.

Besides considering settings in which attentional costs are explicitly asymmetric, my

paper also yields insights into how uncertainty about opponent information acquisi-

tion can lead to deviations from equilibrium play. In all strategic rational inattention

papers, an assumption is made that subjects are aware of the attentional costs of their

opponents, and can understand how this translates into their opponent’s information
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acquisition and behavior. Even in an extremely simple setting, I have shown that

subjects do not behave with this level of sophistication.

A future avenue of work then is to develop a model that integrates the above ideas, and

see when—if ever—subjects may respond to strategic incentives. Yielding testable

predictions is a central feature of the emerging field of cognitive economics. By

synthesizing existing models much in the ways suggested by the endogenous depth

of reasoning literature and the cognitive uncertainty literature, steps can be made

toward a more unified theory. The present paper demonstrates how using the various

cognitive frictions the literature has developed in a vacuum can come at a large cost

in predictability.

While the current paper shows how strategic unsophistication can be “fixed” by hav-

ing subjects play perfectly predictable machines, another future step is to see how

more realistic nudges could help alter behavior. For example, how subjects behave

in response to feedback or information about past performance could bridge the gap

between the main treatment and the computer treatment.
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A Additional Tables

Table A.1: Regression of Correctness in Decision Making Rounds

Dependent variable:

Correct (Logit) Correct (LPM)

(1) (2)

Constant 0.478∗∗∗ 0.616∗∗∗

(0.110) (0.022)

100-Dot 1.200∗∗∗ 0.228∗∗∗

(0.105) (0.018)

Round 0.003 0.001

(0.005) (0.001)

Blue-Majority −0.155 −0.029

(0.099) (0.018)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.2: Regression of Accept in Strategic Rounds

Dependent variable:

Accept (Favorable) Accept (Unfavorable)

Logit LPM Logit LPM

(1) (2) (3) (4)

Constant 0.638∗∗∗ 0.654∗∗∗ 0.015 0.505∗∗∗

(0.130) (0.028) (0.129) (0.032)

Own100 0.822∗∗∗ 0.158∗∗∗ −0.833∗∗∗ −0.199∗∗∗

(0.183) (0.034) (0.192) (0.044)

Opp100 −0.061 −0.014 −0.144∗ −0.036∗

(0.089) (0.020) (0.083) (0.021)

Own100*Opp100 0.075 0.016 0.142 0.036

(0.129) (0.025) (0.114) (0.027)

Round −0.0003 −0.00005 0.001 0.0002

(0.001) (0.0002) (0.001) (0.0002)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure A.1: BIC of Possible Cluster Classifications
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Figure A.2: Classification of Optimal Cluster
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Table A.3: Logistic Regression of Accept, by Favorability

Dependent variable:

Accept (Favorable) Accept (Unfavorable)

(1) (2) (3) (4)

Constant −1.529∗∗∗ −1.772∗∗∗ −2.779∗∗∗ −3.164∗∗∗

(0.459) (0.531) (0.533) (0.592)

Own100 1.550∗∗ 1.243 −1.174∗ −1.709∗∗

(0.635) (0.760) (0.710) (0.803)

BD −0.006∗∗ −0.007∗∗ −0.010∗∗∗ −0.010∗∗∗

(0.003) (0.004) (0.003) (0.003)

BA 0.046∗∗∗ 0.052∗∗∗ 0.058∗∗∗ 0.065∗∗∗

(0.008) (0.009) (0.010) (0.011)

Own100*BD 0.013∗∗∗ 0.017∗∗∗ −0.008∗ −0.006

(0.005) (0.006) (0.004) (0.005)

Own100*BA −0.019 −0.012 0.008 0.016

(0.012) (0.014) (0.013) (0.014)

Round −0.0003 −0.001 0.001 0.0002

(0.001) (0.002) (0.001) (0.001)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure A.3: Requests in the 11-20 Game

Table A.4: Linear Regression of Response Time, by Own Task

Dependent variable:

Own 100-Dot Own 225-Dot

(1) (2) (3) (4)

Opp100 0.121 −0.019 0.017 −0.478∗

(0.154) (0.224) (0.159) (0.290)

Round −0.025∗∗∗ −0.025∗∗∗ −0.014∗∗ −0.015∗∗

(0.005) (0.005) (0.006) (0.006)

BD 0.014 0.047∗∗∗

(0.013) (0.014)

BA −0.003 −0.011

(0.017) (0.019)

Constant 6.049∗∗∗ 5.932∗∗∗ 6.329∗∗∗ 6.208∗∗∗

(0.590) (0.982) (0.545) (1.186)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.5: Logistic regression of Accept, Columns (1) and (4) restricted on sample
that requested less than 59 in the 11-20 game, Columns (2) and (5) restricted on
sample that received a score higher than 1 on the CRT, Columns (3) and (6) restricted
on sample that received a score higher than 2 on the CRT

Dependent variable:

Accept (Favorable) Accept (Unfavorable)

(1) (2) (3) (4) (5) (6)

Constant 0.586∗∗∗ 0.744∗∗∗ 0.708∗∗∗ −0.053 0.006 −0.034

(0.080) (0.097) (0.120) (0.075) (0.088) (0.113)

Own100 0.742∗∗∗ 1.055∗∗∗ 1.214∗∗∗ −0.777∗∗∗ −0.869∗∗∗ −0.996∗∗∗

(0.088) (0.111) (0.141) (0.080) (0.094) (0.124)

Opp100 −0.035 −0.179∗ −0.340∗∗∗ −0.072 −0.149∗ −0.257∗∗

(0.081) (0.094) (0.117) (0.077) (0.090) (0.115)

Own100*Opp100 0.088 0.004 0.267 0.034 0.101 0.179

(0.125) (0.154) (0.196) (0.114) (0.134) (0.177)

Round 0.0001 −0.001 −0.003∗∗ 0.001 −0.0001 −0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.6: Regression of Accept in Strategic Rounds (Computer Experiment)

Dependent variable:

Accept (Favorable) Accept (Unfavorable)

Logit LPM Logit LPM

(1) (2) (3) (4)

Constant 0.572∗∗∗ 0.641∗∗∗ 0.107 0.527∗∗∗

(0.161) (0.036) (0.155) (0.038)

Own100 0.762∗∗∗ 0.147∗∗∗ −0.749∗∗∗ −0.182∗∗∗

(0.263) (0.048) (0.250) (0.058)

30:80 −0.553∗∗∗ −0.133∗∗∗ −0.502∗∗∗ −0.124∗∗∗

(0.187) (0.045) (0.164) (0.040)

Own100*30:80 0.010 0.033 0.343 0.089∗

(0.284) (0.060) (0.224) (0.052)

Round 0.001 0.0003 −0.0001 −0.00002

(0.002) (0.0003) (0.001) (0.0003)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.7: Linear Regression of Response Time, by Own Task (Computer Treatment)

Dependent variable:

Own 225-Dot Own 100-Dot

(1) (2)

30:80 −1.017∗∗∗ −0.519∗

(0.266) (0.279)

Round −0.018∗∗∗ −0.028∗∗∗

(0.004) (0.004)

Constant 7.070∗∗∗ 8.360∗∗∗

(0.324) (0.341)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

B Robustness Checks
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C Additional Theory and Proofs: Level-K Predic-

tions

For all analyses present in this section, I will normalize vo = 0. This is without loss of

generality, as rational inattention results rely only on the distance between potential

utility levels, and not the levels themselves (for example, the solutions to the game

with vH = 90, vL = 10, and vo = 30 are identical to that of vH = 60, vL = −20, and

vo = 0). Note then that the assumption of ex-ante optimality means vH + vL > 0,

whereas the ex-post sub-optimality assumption means vH > 0 > vL.

C.1 Level-1

With the above normalization, a Level-1 player has:

vR(a|R) =
vH
2

vR(a|B) =
vL
2

with V R(r|R) = vR(r|B) = 0. From CDL Proposition 1, the Level-1 player will

unconditionally accept if
1

2
e
−vL
2λR +

1

2
e
−vH
2λR < 1.

Note that the first term is positive while the second term is negative. As λR ap-

proaches 0 from the right, the left hand side goes to positive infinity, and as λR goes

to infinity, the left hand side approaches 1. The function has a derivative with respect

to 0 at λR = H−L
2 ln−H

2

. Since H > −L and H > 0 > L, this value is a positive number.

For λR prior to this value and after 0, the function is strictly decreasing, and after

this value it is strictly increasing. In addition, at this value the function is strictly

less than 1, given H > 0 > L. These facts combined prove that there exists some λ̄R

such that the optimal strategy is to always accept if and only if λ ≥ λ̄R.

The player, however, will never unconditionally reject. This is because in order to

unconditionally reject, the player would have to have:

1

2
e
vL
2λR +

1

2
e
vH
2λR < 1
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Note that the left hand side is strictly greater than:

1

2
e
−vH
2λR +

1

2
e
vH
2λR

which is always strictly greater than 1.

Again from CDL proposition 1, this means the only possible consideration sets for a

Level-1 player are {a}, and {a,r}. With the first being chosen if λR > λ̄R and the

second being chosen if λR is below this cut-off.

What remains to be shown is the SDSC strategy for when both actions are in the

consideration set. Suppose this is the case, and call P [a] the unconditional probability

of accepting a deal. CDL Proposition 1 then says that:

1

2

e
vH
2λR

P [a]e
vH
2λR + 1− P [a]

+
1

2

e
vL
2λR

P [a]e
vL
2λR + 1− P [a]

= 1.

I can then solve for P [a] to get:

P [a] =
1− 1

2
e
vH
2λR − 1

2
e
vL
2λR

(e
vH
2λR − 1)(e

vL
2λR − 1)

which then leads to the SDSC given by the conditions from Matejka and McKay

(2015) as:

P [a|R] =
P [a]e

vH
2λR

P [a]e
vH
2λR + 1− P [a]

P [a|B] =
P [a]e

vL
2λR

P [a]e
vL
2λR + 1− P [a]

.

First, I will show that the unconditional accept probability is increasing in λR. Taking

the derivative of P [a] with respect to λR yields:

−e
vH
2λR vH + e

vH+2vL
2λR vH + e

vL
2λR vL + e

2vH+vL
2λR vL − 2e

vH+vL
2λR (vH + vL)

4
(
−1 + e

vH
2λR

)2 (
−1 + e

vL
2λR )2(λR)2

The denominator of the above expression is always strictly positive. Thus what

remains to be shown is that the numerator is strictly positive as well. Denote the
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numerator by g(λR), note that g(λR) > 0 whenever the below is true:

f(λR) = vH(2− e
−vL
2λR − e

vL
2λR + vL(2− e

−vH
2λR − e

vH
2λR )

because f(λR) is simply g(λR)

e
H+L

2λR

. Deriving the f(λR) again with respect to λR gives:

vHvL
2(λR)2

(e
H

2λR − e
−H
2λR − (e

−L
2λR − e

L

2λR )).

Note that above is strictly negative since H > 0 > L and H > −L. Finally, note that

f(λR) goes to 0 as λR goes to infinity. Thus, f(λR) is positive for all λR > 0, making

g(λR) positive for all λR > 0, making P [a] strictly increasing in λR for all positive

λR.

The probability of accepting an unfavorable deal is again

P [a|B] =
P [a]e

vL
2λR

P [a]e
vL
2λR + 1− P [a]

,

which when derived with respect to λR yields

e
vL
2λR (vL(P [a]2 − P [a]) + 2(λR)2P ′[a])

2(λR)2(1 + P [a](e
vL
2λR − 1))2

where P ′[a] is the derivative of P [a] with respect to λR, which is strictly positive for

positive λR. Note that this value is always positive because 0 < P [a] < 1. So the

probability of accepting an unfavorable deal is also strictly increasing in λR for all

positive λR.

The same derivative for P [a|R], the probability of accepting a favorable deal, is:

e
vH
2λR (vH(P [a]2 − P [a]) + 2(λR)2P ′[a])

2(λR)2(1 + P [a](e
vH
2λR − 1))2

The sign of this derivative can be both positive or negative. Specifically, it is positive

whenever:

vH(P [a]2 − P [a]) + 2(λR)2P ′[a] > 0.
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As λR approaches 0, the above does not hold, as P [a] approaches 1
2
, making the first

term negative, while the second term is small and positive. As λR approaches λ̄R,

P [a] approaches 1, making the first term go to 0 while the second term stays positive.

This gives rise to the dynamics seen in Figure 2.

Also note that since P [a] is strictly increasing in λR and P [a|B] is strictly increasing

in λR, we have that P ′[a|B] > −P ′[a|R] whenever P ′[a|R] is negative, as P [a] =
P [a|R]+P [a|B]

2
. In addition, when both derivatives are positive, the derivative of P [a|B]

is greater than that of P [a|R]. To see this, one can take the difference of two deriva-

tives as seen above, with P [a] and P ′[a] specified as above as well. Dividing this

expression by λR yields an expression in terms of ṽH = vH/λ
R and ṽL = vL/λ

R. It

can be verified that this new expression is positive for all H > 0 > L (the restriction

of H > −L is unnecessary here).

C.2 Level-2

With the above normalization, a Level-2 player has:

vR(a|R) = P1[a|R]vH

vR(a|B) = P1[a|B]vL

with V R(r|R) = vR(r|B) = 0, and P1[a|θ] equal to the probability that a Level-1

opponent accepts a deal of quality θ.

The ex-ante value of accepting a deal is then

E[a] =
P1[a|B]vL

2
+
P1[a|R]vH

2

which is increasing in the opponents cost of attention, because vH > −vL and

P
′
1[a|B] < P

′
1[a|R], from the preceding section.

As the opponents cost of attention approaches 0, the ex-ante value of accepting a deal

becomes vL
2
< 0. As the opponents cost of attention approaches infinity, the ex-ante

value of accepting a deal becomes vL+vH
2

> 0.

First note that if E[a] is positive, the analyses is exactly identical to the Level-1
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analysis, under new variable ṽH = P1[a|R]vH and ṽL = P1[a|B]vL, which satisfy the

same assumptions that vH and vL satisfied. Hence, here behavior will have the same

comparative statics as a Level-1 player with respect to own attention costs. If own

attention costs are higher than some λ̄R, the player will unconditional accept. If else,

the player will accept with positive probability. The SDSC of accepting unfavorable

deals will be strictly increasing, as will the unconditional probability of accepting

deals, with the probability of accepting favorable deals being non-monotonic.

Next, consider the case in which E[a] is negative. I will show that the optimal behavior

of the Level-2 agent is exactly opposite of that of the E[a] positive case. That is,

if own attention costs are higher than some cutoff, the player will unconditionally

reject all deals. If else, the probability a player accepts favorable deals will be strictly

decreasing in own costs, as will the unconditional probability of accepting deals. The

probability of accepting unfavorable deals will be non-monotonic.

The problem is equivalent to one in which a player receives H for accepting a Red deal

and L for accepting a Blue deal, with H > 0 > L, but with the added assumption

that −L > H (which is the opposite of the usual assumption).

Then the player will unconditionally reject if and only if

1

2
e
L

λR +
1

2
e
H

λR < 1.

As λR approaches 0 from the right, the left hand side goes to positive infinity. As λR

goes to infinity, the left hand side goes to 1. The function has has a derivative with

respect to 0 at λR = − H−L
ln−−H

L

which is positive because −L > H and H > 0 > L. In

addition, the value of the left hand side at this value is strictly less than 1, meaning

that there exists some λ̄R such that the optimal strategy is to unconditionally accept

if and only if λ ≥ λ̄R.

The player will also never unconditionally accept. This is because the expression

1

2
e
L

λR +
1

2
e
H

λR < 1

is never true, as it is greater than
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1

2
e
L

λR +
1

2
e
−L
λR > 1

.

So the only two possible consideration sets in this case are (1) only reject, (2) accept

and reject. Thus whenever costs are below the threshold established above, the player

will accept and reject with positive probability. In this case, CDL then gives the the

unconditional probability of accepting must be equal to

P [a] =
1− 1

2
e
H

λR − 1
2
e
L

λR

(e
H

λR − 1)(e
L

2λR − 1)

The derivative with respect to λR is then

−e
H/λRH + e

H+2L

λR H + eL/λ
R
L+ e

2H+L

λR L− 2e
H+L

λR (H + L)

2
(
−1 + eH/λR

)2 (−1 + eL/λR
)2

(λR)2

Here again the sign relies on the sign of the numerator. Taking the numerator,

dividing it by e
H+L

λR , and taking the derivative with respect to λR yields

HL

(λR)2
(eH/λ

R − e−H/λR − (e−L/λ
R − eL/λR))

which is negative because H < −L.

Finally, note that the probability of accepting a favorable deal is

P [a|R] =
P [a]e

vH
λR

P [a]e
vH
λR + 1− P [a]

and that the derivative of this with respect to λR is

e
H

λR (H(P [a]2 − P [a]) + (λR)2P ′[a])

(λR)2(1 + P [a](e
H

λR − 1))2

which is strictly negative because 0 < P [a] < 1, and P
′
[a] < 0 as shown above. Note
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that the equivalent derivative for the probability of accepting unfavorable deals is

e
L

λR (L(P [a]2 − P [a]) + (λR)2P ′[a])

(λR)2(1 + P [a](e
L

λR − 1))2

which has an inconclusive sign, since the first term on the numerator is always positive

and the second term is always negative.

Next, I turn to the analysis of holding the Level-2 players own cost fixed, and instead

increasing the attention cost of their Level-1 opponent. Algebraically, this problem

becomes quickly intractable, so I proceed using numerical methods for this level of

analysis. I analyze the exact parameters relevant in the experimental design (vH = 90,

vL = 10, vo = 30). Figure C.4 illustrates optimal Level-2 SDSC holding one’s own

cost fixed at levels of λ = 10, 20, 30, 40, 50, while varying λ−i of the opponent from

0 to 50. Note that as λ of the opponent increases beyond this range, the SDSC

remains constant as at values of opponent λ higher than those shown the opponent

is unconditionally accepting all deals, and thus the behavior of the Level-2 player

remains unchanged.

Generally, the probability of accepting a deal in either state is increasing with re-

spect to opponent attention costs. Note that this is a subtle problem, and there are

parameterizations for which the slope (from the left) in the probability of accepting

an unfavorable deal is slightly negative at the point at which the opponent begins

unconditionally accepting. However, as illustrated in Figure C.4 this is not the case

under the experiment’s chosen parameters.
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Figure C.4: Numerical derivations of the probability of a Level-2 player accepting
deals of either type, holding own attention costs fixed while varying the attention
cost of the opponent
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D Instructions (Experiment 1)
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E Instructions (Experiment 2)

Note: Part 1 of Experiment 2 is entirely identical to that of Experiment, and are thus

excluded below.
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Note: The 11-20 Game, CRT, and Demographic questions are identical to those in

Experiment 1, and are thus excluded below.
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F Instructions: Timer Payment Mechanism

F.1 Practice

99



F.2 Payment
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